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Primitive Unit Cell

• A primitive cell or primitive unit cell is a 

volume of space that when translated 

through all the vectors in a Bravais lattice 

just fills all of space without either 

overlapping itself or leaving voids.  

• A primitive cell must contain precisely one 

lattice point.



Fundamental Types of Lattices

• Crystal lattices can be mapped into 
themselves by the lattice translations T 
and by various other symmetry operations.

• A typical symmetry operation is that of 
rotation about an axis that passes through 
a lattice point.  Allowed rotations of : 2 π, 
2π/2, 2π/3,2π/4, 2π/6

• (Note: lattices do not have rotation axes 
for 1/5, 1/7 …) times 2π



Five fold axis of symmetry cannot exist



Two Dimensional Lattices

• There is an unlimited number of possible 

lattices, since there is no restriction on the 

lengths of the lattice translation vectors or 

on the angle between them.  An oblique 

lattice has arbitrary a1 and a2 and is 

invariant only under rotation of π and 2 π

about any lattice point.



Symmetry Elements
• The identity operation.

• The reflection operation about a plane

• The inversion operation. If the resulting object 

is indistinguishable from the original, is because the 

inversion center is inside the object.

• The rotation operations (both proper and improper) 

occur with respect to a line called the rotation axis.

• a) A proper rotation is performed by rotating the object 

360°/n, where n is the order of the axis. 

b) An improper rotation is performed by rotating the 

object 360°/n followed by a reflection through a plane 

perpendicular to the rotation axis



Point Group Symmetry

• Point group symmetry is when all symmetry operations 

act on a point, i.e. no translational symmetry.

• There are many symmetry point groups, but in crystals 

they must be consistent with the crystalline periodicity 

thus 5-fold and 7-fold axes are not possible in 

crystals and therefore only 32 point groups are allowed 

in the crystalline state of matter. These 32 point 

groups are also known in Crystallography as the 32 

crystal classes



Translational Symmetry 

Elements

• Combining the rotation axes and the mirror 

planes with the characteristic translations of 

the crystals, new symmetry elements appear 

with some "sliding" components: screw 

axes and glide planes.



Screw Axes

A 21 screw axis in the c direction. A rotation of 180 followed by a translation of c/2 

along the c axis. In general the notation for a crew axis is nm where n is the order 

of the rotation axis and m/n is the amount of translation along a unit cell axis.



Glide Planes

A mirror plane is reflection in a plane followed by translation in a direction parallel 

to the plane is called a glide plane (in this case an a glide plane). The glide plane is 

designated as a, b, or c if the translation is a/2, b/2, or c/2 and n if it is (a + b)/2, (a

+ c)/2, or (b + c)/2. 

There is also a diamond (d) glide plane which only occurs in face of body centered

unit cells. In this case the translation is: (a + b)/4, (a + c)/4, or (b + c)/4. 



Symmetry Elements and Equivalent Positions

• In order to discuss the effect of symmetry 

we have to consider its effect on the 

general (arbitrary) position, x, y, z.

• The operation acts to produce new 

coordinates for equivalent positions, i.e. 

sites identical in all respects as seen by 

the molecule.

• This is shown by the following tables.





Symbols for Space Groups



Bravais Lattices

• In addition, the repetition modes by 

translation in crystals must be compatible 

with the possible point groups (the 32 

crystal classes), and this is why we 

find only 14 types of translational 

lattices which are compatible with the 

crystal classes. These types of lattices 

(translational repetition modes) are known 

as the Bravais lattices.



14 Bravais Lattices



Primitive vs Non-Primitive Lattices

• There are 7 primitive and 7 non-primitive Bravais lattices.

• In any array of lattice points it is always possible to 

choose a primitive triclinic cell regardless of the 

symmetry present.

• However this neglects simplification provided by 

symmetry.

• Cardinal rule is to choose the cell so that it conforms to 

symmetry actually present.

• In addition there are some conventions to bring a degree 

of standardization to the choice of cell.

• This is illustrated in the next slide.



I vs C in Monoclinic Cells

In this example the unit cells outlined by light grid lines have their ab faces 

centered and thus correspond to a C lattice.

An alternative (and equally good) set of unit cells is illustrated by the cell 

outlined in heavy lines

Those points formerly at the centers of the ab faces are now at the body center 

of the new cell and thus this cell would be designated as I.

By convention the C cell is chosen.

However sometimes I is chosen for convenience of structural reasons (choice 

of axes by diffractometer to make β as close to 90 as possible).



Space Groups

• Space groups are designated by the type 

of Bravais lattice symbol (P, A, B, C, I, or 

F) along with symbols representing the 

necessary and sufficient symmetry 

operations to define the group.

• Combining the 32 allowed point groups 

with the 14 Bravais lattices leads to 230 

space groups.

• We will look start with the simplest case 

and build up to more complex cases.



Space Groups from Point Group 1:

P1 SG #1

Unit cell is always drawn with the origin at the top right hand corner, the b axis to 

the right and the a axis down the page.

We use a motif (,) to symbolize a general position in the unit cell and then use 

the symmetry elements to generate equivalent positions

Since the diagram is 2-D we use (+) to symbolize position along the z axis.

All lattice points have to be equivalent by definition.

We note that there is only one lattice point inside the unit cell so the general 

multiplicity of this SG is 1.



From Point Group -1: P-1 SG #2

Centers of inversion are represented by °. 

Since the environment of all lattice points must be the same these centers must 

occur at every corner, half way along each edge, at the center of each face, and 

the body center.

We start with the motif at position (1) and then use the symmetry to generate 

position (2).

The general position and its equivalent are given.

We note that there are two lattice points inside the unit cell boundary even though 

one of them is marked by (-) which means it is outside the cell boundary.

However adding 1 to this z coordinate would bring it inside the unit cell so the 

general multiplicity of this SG is 2.

These are the only 2 space groups in the triclinic system.



Space Groups from Point Group 2,  m or 2/m

• The next three point groups either have  a 

2-fold axis, a mirror plane or both.

• These are inconsistent with the triclinic 

system but are consistent with the 

monoclinic system.



P2 SG #3

Note the use of  and  to symbolize the 2-fold symmetry along the b axis.

Commencing with position (1) we use this symmetry to generate position (2).

All other motifs are generated using the fact that the environment about each 

lattice point has to be identical.

The general position and its symmetry equivalent are listed.

We note that there are two lattice points inside the unit cell boundary so the 

general multiplicity of this SG is 2.



Space group #4; P21

Note the use of symbols to designate the 21 axis in the b direction

Starting from position (1) we generate position (2) by rotating about the b axis 

followed by translation of b/2 in the b direction.

All other motifs are generated using the fact that the environment about each lattice 

point has to be identical.

The general position and its symmetry equivalent are listed.

We note that there are two lattice points inside the unit cell boundary so the general 

multiplicity of this SG is 2.



SG #5; C2

This is a non-primitive C-centered lattice so for every x, y, z position there will 

be an equivalent ½+x, ½+y, z position.

The combination of C-centering and the 2-fold rotation axis leads to the 

presence of 21 axes at a/4 and 3a/4, midway between the 2-fold axes.

This will be seen as we generate all the equivalent positions using both the C-

centering and 2-fold axes.

From (1: x, y, z) using the 2-fold we get (2: -x, y, -z).

Then using the C-centering we get (3: ½+x, ½+y, z).

Then using the 2-fold at a/2 we get (4: ½-x, ½+y, -z).

But we can go from (1) to (4) directly by using the 21 at a/4.

Thus we have proved the existence of this addition symmetry element by 

combining C-centering with a 2-fold rotation axis.



Point Group m, SG #6 Pm

Mirror planes have to be perpendicular to b axis and are 

shown as heavy lines with one at b/2.

Position (2) generated from position (1) by the mirror plane.

Two motifs inside cell and 2 general positions.



SG #7: Pc

This space group is similar to the diagram for Pm except that the c glide 

planes (shown as dotted lines) replace the mirror planes. 

Position (2) from position (1) by the c glide. We note the reflection through 

mirror followed by translation of c/2

Two motifs inside boundaries of cell thus two general positions.



SG #8: Cm

This space group combines C-centering with mirror planes coincident with B faces 

and at b/2.

The combination of C-centering and  mirror planes generates a glide planes at b/4 

and 3b/4.

Starting from position (1), position (2) is generated by the mirror plane, then 

position (3) is generated by the C-centering, followed by position (4) due to the 

mirror plane at b/2.

It can be seen that going directly from (1) to (4) requires the presence of an a glide 

at b/4 and thus proves the existence of this symmetry element.

In this space group there are 4 general positions.



SG #9: Cc

The B faces contain the c glide planes indicated by the dotted lines.

The combination of C-centering with c glide planes produces n glide planes at b/4 

and 3b/4.

Starting with the general position (1), position (2) is generated by the c glide plane.

From (1), position (3) in generated by the C-centering.

From position (3), position (4) is generated by the c glide plane at b/2

Position (4) is related to position (1) by the n glide plane.

There are 4 motifs inside the boundaries of the box leading to 4 general positions in 

this space group.



Point Group 2/m

• Combining 2/m with a P lattice leads to SG’s P2/m, 

P21/m, P2/c and P21/c.

• The symmetry elements 2/m correspond to a center of 

symmetry so these SG’s are centrosymmetric.

• Choosing the 2-fold axis coincident with b and the mirror 

planes coincident with B faces places the center of 

symmetry at the origin.

• We will only discuss SG’s P2/m and P21/c



SG #10: P2/m

Center of symmetry at origin, 2-fold axes along b axis and at a/2.

Mirror planes in B face and at b/2.

These elements generate positions (2), (3), and (4) from position (1)

Four motifs inside boundaries so general multiplicity of 4 for this SG.



SG’s P21/m, P2/c & P21/c

• For crystallographic computing reasons 

the origin is usually chosen to be a center 

of symmetry if possible.

• For these SG’s the centers do not lie at 

intersection of planes and axes because 

both 21 and c involve translations.

• We have to move these elements to allow 

the center to be the origin.

• This is shown on next slide.



Shift of Origin

In diagram (a) the 21 is along b with mirror planes in B face and at b/2.

Centers are seen at b/4 and 3b/4 and mirror planes at b = 0 and b = ½.

Shifting the center to the origin by the translation of b = -½ will put the mirrors at b/4 and –

b/4 (equivalent to 3b/4).   

For 2/c In diagram (b) shows center at c/4 and 4c/4 with 2-fold axes at c = 0 and c = ½.

Shifting the center to the origin by the translation of c = -½ will put the 2-fold axes at c/4 

and –c/4 (equivalent to 3c/4).   

For 21/c a similar origin shift will place the 21 axes at c/4 and 3c/4



SG #14: P21/c

Note that the 21 axes are at c/4 (and 3c/4).

Thus going from (1) at x, y, z to (2) will be at –x, y + ½, ½ - z using the 21 at c/4.

From (2) to (3) we use the center at b/2 or to go from (1) to (3) we use the c glide 

at b/2.

To go from (1) to (4) we use the center at the origin.



Space groups

• All 230 Space groups are listed in 

International Tables for Crystallography 

Volume A in the standard setting as well 

as some non-standard settings for the 

more common space groups.

• There is much useful information for each 

SG.

• The pages for P21/c are shown next.



P21/c Page 1



P21/c Page 2



Information of Page 2

• Note the General Multiplicity of the SG and 

the equivalent positions

• Note the systematic absences that 

determine the SG (more about systematic 

absences later)

• Note the special conditions, their 

coordinates and their site symmetry.



Crystal System Frequency

Crystal System Frequency

Triclinic 20.91% 

Monoclinic 53.16%

Orthorhombic 20.98% 

Tetragonal 2.33% 

Trigonal 1.62% 

Hexagonal 0.53% 

Cubic 0.47% 



Space Group Frequency in CSD

• Symbol SG No Frequency

• P21/c               14      36.0%  

• P-1 2      19.9%  

• P212121 19                9.2%  

• C2/c                15                7.3%  

• P21 3                5.8%  

• Pbca               61       3.9%  

• Pnma              62                1.6%  

• Pna21 33       1.6%  

• Cc 9       1.0%  

• P1 1       1.0%



Systematic Absences

• Translational symmetry elements, i.e. nonprimitive 

lattices, screw axes and glide planes give diffraction 

patterns in which certain classes of reflections are 

absent.

• In some cases these can be used to unambiguously 

determine the SG.

• However there are many SG’s which are not uniquely 

defined by their systematic absences.

• Fortunately the 6 most common SG’s are uniquely 

defined by their systematic absences.



Translational Symmetry and Extinctions



Determining SG from Absences

1. Determine lattice type from general 

reflections (hkl).

2. Find glide planes from hk0, h0l, and 0kl

classes.

3. If no glide planes, find screw axes from 

h00, 0k0, and 00l classes.



hkl reflections

Individual reflections are missing but no systematic absences  P lattice



0kl reflections

Note that every odd row of k reflections is systematically absent for the hkl layer 

where h = 0  indicates the presence of a b glide plane.



h0l reflections

For hkl reflections where k = 0, all odd rows where l is odd is absent  indicates the 

presence of a c glide plane.



hk0 reflections

For the hkl reflections where l = 0, all rows where h is odd are absent  indicates 

the presence of an a glide plane



Space group determination

• From hkl reflections  P lattice

• From 0kl reflections  b glide

• From h0l reflections  c glide

• From hk0 reflections  a glide

• Space group  Pbca which is uniquely 

determined, i.e. no other possible SG for 

these absences.


